
SCREAM – SuperCollider Resource for Electro-Acoustic Music

Michael Leahy*
*EGR & Recombinant Media Labs

michael@egregious.net

Abstract

SuperCollider3 is a major achievement for programmatic
real time audio synthesis. However, the adoption of
SuperCollider3 has been limited to a small community due
to it being a domain specific language/environment and the
difficulty of using the tools provided in the default
distribution. The SuperCollider3 language is a powerful
tool to interact with the SuperCollider3 server, but requires
the user to engage SuperCollider3 through a programming
language. Scream is a high level component oriented
framework built in Java to interact directly with the
SuperCollider3 server. Scream enables complete
applications to be built with sophisticated GUIs that are
accessible to users of all skill level while maintaining an
API for developers to create new software.

1 Introduction
 Scream is a cross platform component oriented Java
environment and API to utilize the SuperCollider3 DSP
audio engine and language among other OSC/MIDI enabled
applications. My initial goal with Scream is to establish a
framework to use with SuperCollider3 (SC3) to create new
audio tools for studio, live performance, and sound
installation applications. SC3 is the most advanced real time
audio programming environment available today. Since the
summer of 2002 SC3 has been an open source project under
GPL with a fairly small, but dedicated community. SC3 is
very powerful, however it is not directly aimed at the
hobbyist or typical musician. Currently, other real time
audio engines such as Max/MSP and PureData offer the user
a graphical interface to create synthesis patches. The default
tool to interface with SC3 is SCLang which is an interpreted
programming language similar to Smalltalk. SCLang is a
client to the SC3 Server and communicates with it via OSC
(Open Sound Control).

2 Scream Description
Scream is a high performance real time engine that

facilitates advanced software development and multimedia
interaction with SC3 through a component oriented
framework. This framework provides many services to
Scream applications such as an accurate callback
clock/scheduler, custom event system and data models,

efficient client/server based networking system for OSC
communication, and hardware accelerated 2D/3D graphics
library support.

2.1 High Level Language Support
Scream is constructed in the Java programming

language. There are many benefits to using a high level
language to connect to the SC3 Server. The first and
foremost benefit is that Java is an easy to understand and
mature object oriented language that supports rapid
component oriented development. Java also provides several
auxiliary APIs for networking, MIDI, graphics (Java2D,
JOGL, LWJGL), and cross platform support.

An immediate concern of using Java is the ability to
create a real time system appropriate for music performance
and creating multimedia interfaces. JFC/Swing is the
standard GUI toolkit available, but is not necessarily a real
time capable system. Scream provides a custom GUI library
that is renderer agnostic. Components in the GUI library
may have multiple hardware accelerated renderers
constructed in Java2D/Volatile Image API, JOGL
(OpenGL) and/or LWJGL (OpenGL). Swing is still
accessible in Scream GUIs when using a Java2D or JOGL
renderer, but is not relied upon to display real time data.

Figure 1. A partial screen image showing components from the
Scream GUI library. The ScreamGraph component (using a Java2D
renderer) is on the left displaying a hypotrochoid shape. It may be used
for spatialization or as a geometric oscillator. Knobs and faders are
visible on the right.

© Michael Leahy, 2004

mailto:michael@egregious.net

2.2 Scream Engine
 Scream is an engine that provides services to all
executing modules. For instance there is only one
clock/scheduler that is shared between all executing
modules. This allows accurate event scheduling to occur on
a regular basis without interruption. Another subsystem that
is shared between all modules is MIDI. Data models from
any module may register to receive MIDI events that are
dispersed from a central interface. A further Scream
subsystem is the lag and modulation engine. Most Scream
controls may be lag enabled or connected to modulation
sources such as various LFO waveforms. The ScreamGraph
component pictured in Figure 1 is used for spatial data, but
also can be used as a complex geometric
oscillator/modulation source.
 On the API side for developers Scream integrates
functionality such as loading and saving state automatically.
Developers do not need to worry on how to implement
load/save functionality when the Scream component library
is used to construct new software.
 One of the most compelling features of Scream is its
component orientation. Scream utilizes a plugin engine that
facilitates extensibility. All Scream modules are essentially
plugins that utilize the functionality of the Scream engine.
There is a lot of freedom in designing a new audio system.
Unlike other audio tools where plugins are basically limited
to audio effects or instruments, each component in Scream
may define its own plugin interface. An example of a
current Scream component that utilizes five different types
of plugins is the ScreamGraph component. ScreamGraph
plugins include generators (parametric math, polar, splines,
etc.), transforms (image processing on the resulting
generated geometry), positional plugins, time movement
(linear time, random, brownian), and data filters.
 Data filtering is an interesting aspect of Scream
components. A generic component may have a data filter
attached to its output. The ScreamGraph component
includes data filters to translate graph coordinates to the
proper format for SC3s ambisonic spatialization
functionality. On the fly coordinate data is transformed into
amplitude and angular data.

3 Current Scream Progress
 Fulltime development of Scream commenced in April
2003. I have overcome most of the major development
issues to providing a high performance environment for
Scream. Most of my work has been focused on the Scream
engine itself, but presently (February 2004) there are three
completed applications available. The first application is a
granular sampler. This application allows the loading of
sample data into SC3 from local files or over the network
and enables the user to scan (forwards/backwards), alter the
sampling rate, pitch shift, and define an envelope applied to
the sample. The second application is an ambisonic mixer
utilizing the 1st order b-format functionality available in
SC3 which is suitable for spatializing audio on a 2D plane

with N-speakers. The final application is a combination of
the previous two, the AmbiGranusampler which enables the
Granusampler with ambisonic spatialization.
 Scream was used for a large scale installation at Burning
Man during August 2003. The Sol System collective
constructed an eight point sound array erected around a 120’
diameter circle. Each point was an 5’ by 10’ full range stack
of speakers. This was a perfect setup to utilize the Scream
ambisonic spatial mixer and it sounded amazing on the open
desert with no confined space causing reflections.

Figure 2. Sol System 8 channel sound array at Burning Man 2003
(picture by: Andrew Polson)

4 Future Scream Development
 Work on the Scream engine continues rapidly. Core
engine functionality will be well defined, implemented, and
tested by summer 2004. This functionality includes an IDE
editor and compiler for SC3 synth definitions. Beyond
Scream engine development the standard component library
will be extended. These extensions include further modular
environments such as a standard mixer that maps to SC3
functionality. Other components will include 3D
graphics/spatialization tools. Eventually, 2nd and 3rd order
ambisonic plugins will also be developed making
Scream/SC3 capable of controlling a large scale speaker
array setup in a 3D arrangement.

4.1 Middleware Integration
 Scream will integrate with various middleware software
available on the Java platform. In particular Scream will
integrate with the Xith3D and OpenMind 3D scene graph
engines, JavaODE physics bindings to ODE (Open
Dynamics Engine), the SimBionic AI engine, and JMSL.

4.2 Domain Specific Language Integration
With OpenGL 1.5 support and beyond Scream will

utilize OGLSL (OpenGL Shading Language). OGLSL is a
domain specific language (DSL) oriented towards extending
the fixed hardware pipeline of modern accelerated graphics
cards with programmable functionality called shaders.

Scream will form a bridge between OGLSL and SC3
enabling advanced audio/graphics applications. It will be
possible for SC3 to provide control data that can be mapped
to particular functions of an OGLSL shader and vice versa.
Scream will provide an IDE for shader development that
will allow easy integration with the Scream engine and SC3.
This shader development tool will be similar to ATI/3DLabs
RenderMonkey, but have the added benefit of being able to
interactively access the Scream engine and SC3. The
Scream shader IDE will be compatible with the
RenderMonkey XML file format, so that shaders may be
exchanged freely between either program.

4.3 Interactive Audio for 3D Simulations
 Beyond constructing a framework for creating music
tools my focus has extended to creating a multimedia
distribution for Java where Scream/SC3 provides the
unifying audio technology. Scream will enable advanced
multimedia games and 3D simulations that include dynamic
real time audio. I believe that all the advances in real time
computer graphics are meaningless without dynamic real
time audio. The gaming industry has mostly ignored real
time audio up to this point. Scream and SC3 will provide the
missing link. Scream will utilize the emerging Interactive
XMF standard that should be publicly available by summer
2004. Scream will provide an IXMF soundtrack manager
and will extend IXMF with Scream/SC3 functionality.
 Scream will offer a robust fail safe API for advanced
audio by also supporting FMOD and finally OpenAL.
FMOD & OpenAL are cross platform audio engines for 3D
simulations, however both lack the real time audio synthesis
capabilities of SC3. If SC3 is not available on any given
platform or for some reason fails to run then the Scream
engine will fallback to FMOD or OpenAL and a static
sound library if provided by the game/simulation.

4.4 Ms. Pinky
 Another interesting area of development is the
integration of Ms. Pinky with the Scream environment. Ms.
Pinky is a tool to use vinyl/turntables as a control source.
Not only will advanced DJ tools be available through
Scream, but this control data will be available generically to
any Scream component and even within the SC3 engine
itself. It will be possible to control spatialization from
turntables and use Ms. Pinky to send control data to OGLSL
shaders creating dynamic graphic effects driven through
turntablism.

 For an accurate snapshot of completed and future Scream
development visit the web site available in the references
section.

5 Acknowledgments
My family and friends for continued support.
Naut Humon for material and facility support.
Gérard Pape / CCMIX

Resources
ATI/3DLabs RenderMonkey
 http://www.ati.com/developer/sdk/ (continued)
 radeonSDK/html/Tools/RenderMonkey.html

Cousinié, Alban et al. OpenMind
 http://www.mind2machine.com/gb/openmind/

Cycling ’74, Max/MSP
 http://www.cycling74.com/

Didkovsky, Nick, and Burk, Phil JMSL
 http://www.algomusic.com/jmsl/

Firelight Technologies, FMOD
 http://www.fmod.org/

Interactive XMF Working Group
 http://www.iasig.org/wg/ixwg/ixwg.shtml

Laasko, Jani et al. Java ODE
 https://odejava.dev.java.net/

Leahy, Mike. Scream
 http://audio.egregious.net/scream/

Java Gaming Community
 http://www.javagaming.org (Check discussion forums)

McCartney, James et al. SuperCollider3
 http://supercollider.sourceforge.net/

OpenGL
 http://www.opengl.org

OpenGL Shading Language
 http://www.3dshaders.com

Puckette, Miller et al. Pure Data
 http://www-crca.ucsd.edu/~msp/software.html

Rychlik-Prince, Caspian et al. LWJGL
 http://www.lwjgl.org/

SimBionic AI Engine
 http://www.simbionic.com/

Sol System
 http://www.solsystem.org/

Sun, Java
 http://java.sun.com/

Wardel, Scott. Ms. Pinky
 http://www.mspinky.com/

Wright, Matt. Open Sound Control
 http://www.cnmat.berkeley.edu/OpenSoundControl/

Yazel, David et al. Xith 3D
 http://xith.org/

http://www.ati.com/developer/sdk/
http://www.mind2machine.com/gb/openmind/
http://www.cycling74.com/
http://www.algomusic.com/jmsl/
http://www.fmod.org/
http://www.iasig.org/wg/ixwg/ixwg.shtml
https://odejava.dev.java.net/
http://audio.egregious.net/scream/
http://www.javagaming.org/
http://supercollider.sourceforge.net/
http://www.opengl.org/
http://www.3dshaders.com/
http://www-crca.ucsd.edu/~msp/software.html
http://www.lwjgl.org/
http://www.simbionic.com/
http://www.solsystem.org/
http://java.sun.com/
http://www.mspinky.com/
http://www.cnmat.berkeley.edu/OpenSoundControl/
http://xith.org/

	Abstract
	1 Introduction
	Scream Description
	2.1 High Level Language Support
	2.2 Scream Engine
	3 Current Scream Progress
	4 Future Scream Development
	4.1 Middleware Integration
	4.2 Domain Specific Language Integration
	4.3 Interactive Audio for 3D Simulations
	4.4 Ms. Pinky

	Acknowledgments
	Resources

